
XLMS: A LINGUISTIC MEMORY SYSTEM,(U)

SEP 80 L B HAWKINSON N00014-75--0661

UNCLASSIFIED MIT/LCS/TM-173 NL

IIEN

- zLEV[

MASSACHUSETTS
LABORATORY FOR INSTITUTE OF
COMPUTER SCIENCE TECHNOLOGY

~Mrr,,7C.S/24173

XENS: A LINGUJISTIC MEMOIRY SYSI'M

Lowell B. Hawkinson

September 1980

This research was supported by the Advanced Research
Projects Agency of the Department of Defense and was

monitored by the Office of Naval Research under
Contract No. N00014-75-C-0661

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139-2

SECURITY CLASSIFICATION OF THIS PAGE (WMan Dote Entered)

REPOT DCUMNTATON AGEREAD INSTRUCTIONS
_____ REPORT___DOCUMENTATION ___PAGE___ 3EFORE COMPLETING FORM

I. REPORT NUMBER ~ / IGOVT ACCESSION NO. 3. RECIPIENT'S CATALOG MUMBER

MI/T1M-173 A '1/ 3 _ _ _ _ _ _ _ _

4. TITLE (and Subtitle) S. TYPE OF RZPORT A PERIOD COVERED

XLEMS: A Liinguistic MemorzySyste/___________

b~gyp.~aapnS~ PORT UE

79 MI/LcS/V-173 ..

7. AUTHOR(s) S. CONTRACT OR GRANT NUMBER(a)0

/0 Ia.'ll B./HaWkinson] /

9. PEFOMG ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK

545 Tcbnology Square

Canbridge, MA 02139__________________________________t.
I I. CONTROLLING OFFICE NAME AND ADDRESS WQTQX

ARPAADepartment of Defense e P
1400 Wilson Boulevardr"OPAE
Arlngon VA 22209 5

1.MONITORING AGENCY NAME 6 ADDRESS(il different from Controlling Office.) 1S. SECURITY CLASS. (of 1herps)

CNR/Department. of the Navy Ucasfe
Informiation System Program

Arligton VA 2217DECLASSIFICATION/ DOWNGRADING
Arligton VA 2217Se.SCHEDULE

1S. DISTRIBUTION STATEMENT (of tise Report)

This document has been approved for public release and sale;
its distribuition is unlimited

17. DISTRIBUTION STATEMENT (of thme abstract entered I Block 20. it different fromi Report)

IS. SUPPLEMENTARY NOTES

t9. KEY WORDS (Continue on eover&* side If necesary and Identity by block number)

knowledge representation
semantic network
liguistic memory

) 20. ABSTRACT (Continue on reveree side it necoeeay end Identity by block number)

;, IMS (*Linguistic Mmory System") is a knowedge representation fOrMalisn
particularly designed for representiM nowaxledge that can be straightforwardly
expressed in natural language. Fundmentally, it is a semantic netwo*
formialism, a formalism for managing interonnectsd ObJects in a highly-
organized, netw~ork-like memory. XIM is a particular LISP-based izvplemntation
*of Ims, intended primarily for experbyental use.,

DD 1473k EDITION OF I NOV 65 IS OBSOLETE

SECURITY CLASSIFICATION OF THIS PAGE (Uhen Dotes terded)

Y ,

CMTVY CL*MWICATmW@O TWOn P*9&=Sf ot

SUCURITY CLASOPICATION OP T1416 PtegNbm Da eft

I.

XLMS: A Linguistic Memory System

Lowell B. Hawkinson

Abstract. LMS ("Linguistic Memory System") is a knowledge
representation formalism particularly designed for representing knowledge
that can be straightforwardly expressed in natural language.
Fundamentally, it is a semantic network formalism, a formalism for
managing interconnected objects in a highly-organized, network-like
memory. XLMS is a particular LISP-based implementation of LMS,
intended primarily for experimental use.

Key words: knowledge representation, semantic network, linguistic
memory.

This report describes research done at the Laboratory for Computer
Science of the Massachusetts Institute of Technology. This research was
supported by the Advanced Research Projects Agency of the Department
of Defense under Office of Naval Research Contract number
N00014-75-C-0661.

Acknowledgements. I want to thank all those who have used the various
implementations of LMS that have existed over the past several years.
The feedback received from that usage has contributed greatly to the
design of XLMS as here documented, and has served to inspire a new
variant of LMS called PREP, which is now undergoing development.
Those whose contributions deserve particular mention include: William A.
Martin, Peter Szolovits, Glenn Burke, Gretchen Brown, William J. Long,
William Swartout, Ramesh Patil, Byron Davies, and John H. Thompson.
Most of all, I wish to thank Prof. Martin for his continued support and
encouragement of this work, and for his substantial contributions to its
content. AN of its def'iencies, I should note, ar solely my own
responsblity.

August 190

il~~~F AcceS,'-ti

C O N T E N T S
V-T:Xcc's " " y .

1. Introduction ... I

2. LMS Notation ... 3 D. ,.t

2.1 Double-Quoted Spellings 3A.
2.2 Labels .. 4
2.3 Parenthesis-Delimited Expressions S
2.3.1 Primitive Tie Letters 6
2.4 Equations .. 6
2.5 Square-Bracket-Delimited Expressions 7
2.6 Complexes .. 7
2.6.1 Attachment Specifications 8
2.6.2 Anaphoric Abbreviations 10
2.7 Item izations ... I1
2.8 Computational Expressions 12
2.9 Absorption Forms 13

3. Basic LMS Operators .. 14

3.1 Operators Pertaining to Concepts 15
3.1.1 The c Relation and Operators that Use It 16
3.1.2 Operators that Look For Concepts 19
3.2 Operators Pertaining to Attachments 21
3.2.1 Operators that Get or Look For Attachments 22
3.2.2 Operators Pertaining to Value Zones 23
3.2.3 Operators Pertaining to Attachment Relations 24

4. Specialized LMS Operators 26

4.1 Operators Pertaining to Sequences and Seq. Fragments 26
4.2 Low-Level Operators Pertaining to Nodes 30
4.3 The Canonical Ordering of Nodes 33
4.4 Operators Pertaining to Atomic Symbols 36
4.5 Operators Pertaining to Numerically Labeled Concepts 37

.................

Appendix 1. BNF Sum a otationo........... 40

Appendix n. The MACLISP IJmplentatiCo of XLM......

Index 47

1. Introduction

LMS ("Linguistic Memory System") is a knowledge representation
formalism particularly designed for representing knowledge that can be
straightforwardly expressed in natural language. LMS may be viewed as
a notational formalism, but is, more fundamentally, a semantic network
formalism, a formalism for managing interconnected objects in a
highly-organized, network-like memory. X.LMS is a particular LISP-based
implementation of LMS, intended primarily for experimental use.

The predominant type of object in an LMS memory is the concept. A
concept has three essential components, known as the ilk, tie, and cue,
which are its immediate constituents. The ilk and tie of a concept must
themselves be concepts, while the cue may be either a concept, a
sequence, a sequence fragment, or an atomic symbol.

A sequence is an object in an LMS memory, the elements (and
immediate constituents) of which may be concepts, sequences, sequence
fragments, and/or atomic symbols, arranged in some particular order. A
sequence fragment is like a sequence, but is notationally and operationally
distinct; it exists primarily to provide a "taxonomic structure" above
sequences. Both sequences and sequence fragments may have any F
number of elements. The null sequence is distinct from the null sequence
fragment.

In XLMS, concepts, sequences, and sequence fragments are all
inplemented in terms of a more primitive type of object, the node. A
node has two essential components, known as the genus and specializer,
which are its immediate constituents. The genus of a node must itself be
a node, while the specializer may be either a node or an atomic symbol.

The following two constraints apply to all concepts, sequences,
sequence fragments, and nodes in a particular LMS memory on a
particular occasion.

(1) No two objects of one of these types may have the same
combination of immediate constituents in the same order. Therefore, the
immediate constituents of such an object, appropriately arranged, may
serve as a proper name for it: something that identifies the object
uniquely within memory, and thus provides a basis for locating it and
notating it.

(2) No such object, except for summum-genus, may be a constituent
of itself. (The constituents of an object are its immediate constituents
plus all constituents of its immediate constituents.) The concept
summum-genns is its own ilk, tie, and cue.

.1 r

2

In addition to their essential components, concepts, sequences, and
sequence fragments, as well as other (incidental) nodes, may have any
number of objects attached to them. Associated with each attachment is
an attachment relation, which indicates how the attached object relates to
what it is attached to. Attachment relations are objects of a special
type.

In addition to the above-described kinds of objects, XLMS also
manages atomic symbols, though only insofar as they are used for various
special purposes within XLMS--see the section entitled "Operators
Pertaining to Atomic Symbols".

An important aspect of XLMS is LMS notation, a notation for objects
and attachments. Concepts, sequences, sequence fragments, and nodes all
have at least one form of notation that makes use of the fact that their
immediate constituents, appropriately arranged, properly name them.
Also, any object in an LMS memory may have any number of labels
assigned to it. A label is a syntactically simple proper name assigned to
an object solely for purposes of notation. Sometimes, in processing LMS,
notation, it is necessary to assign a label provisionally to a dummy node,
a special type of object that is not a node, but may later turn into one.

LMS, was originally developed as a fundamental component of the
OWL system. Discussions of the theoretical background of LMS, in the
context of OWL, may be found in Hawkinson [4J, Martin [7-91 and
Szolovits et al [111. LMS has been used in several "knowledge-based"
application areas, including dialogue processing [11 computer program
writing (61 and drug therapy recommendation [101

3

2. LMS Notation

LMS Notation is a notation for objects and attachments. Every
expression in LMS notation represents some object, though any given
object (in a memory) may be represented by many different notational
expressions.

When an LMS notational expression is absorbed by LMS, each object
and attachment represented therein is created in memory as soon as it is
determinable from its representation (which may be immediately, at some
future time, or never), if it does not already then exist. A represented
object or attachment is not yet determinable if its representation includes
an as-yet-unassigned label, whether directly or via an "anaphoric
abbreviation"; see below. We speak of absorbing rather than reading
LMS notation, because LMS notation, unlike LISP notation, cannot
always be absorbed when it is read. In particular, LMS notation cannot
be absorbed at compile time in the MACLISP implementation of XLMS,
because nodes cannot be created at that time.

LMS notation is unrelated to LISP notation, except in that each can
appear (properly delimited) within the other. Whenever LMS notation
appears within LISP notation, it must be delimited by square brackets.
Conversely, LISP notation can appear within an LMS notational
expression only as (or as part of) the body of a "computational
expression" (see below).

This chapter presents the syntax of LMS notation somewhat
informally. A more precise account is given in the appendix entitled
"BNF Summary of LMS Notation".

2.1 Double-Quoted Spellings

All atomic symbols (except for LISP's nil--see below) have LMS
notational representations as double-quoted spellings. Any
"normally-spelled" atomic symbol except nil may be represented in LMS
notation by its spelling enclosed in double quotation marks, e.g., "fire",
"M.I.T.", "two-o'clock", "52". (A normal spelling is a non-null string of
letters, digits, hyphens, periods, and apostrophes. Letters in normal
spellings are not distinguished by case, font family, face, or size; thus, for
example, "fire", "Fire", and "FIRE" all represent the same
normally-spelled atomic symbol. In XLMS, letters in normal spellings are
represented by ASCII codes for upper-case letters, and also by atomic
symbols corresponding to upper-case letters.) Also, any atomic symbol,
whatever its spelling, may be represented in LMS notation by: two double
quotation marks, followed by the spelling with any double quotation

A--.a il

4

marks therein doubled, and terminated by a double quotation mark.
Examples of this second format are Thank you.", ""aob", and """",

the last representing the atomic symbol whose spelling consists of a single
double quotation mark.

Note that in addition to its double-quoted spelling representation(s), all
atomic symbols except LMS's "nil" have LISP notational representations,
e.g., fire or IThank youj, that do not involve square brackets. (LMS's
"nil" is distinct from LISP's nil to avoid not-found/nil-found
ambiguities. In other words, LISP's nil is not used for "nil" so-that nil
can be used as an unambiguous not-found value by an operator that
might actually find and return "nil".)

2.2 Labels

Labels in LMS are similar in purpose and use to labels in an "assembly
language". A label is a name assigned to an object solely for the purpose
of representing it in LMS notation. Global (globally scoped) labels must
be normally spelled, whereas local labels (not yet supported in any
implementation of XLMS) must be normally spelled except for a prefix S.
An object May have any number of labels assigned to it, though most
objects will have no label at all.

If a label, say foo, has been or will be assigned to an object x, then
foo (or Foo or FOO, since letters in label spellings are not
case-distinguished) may be used as an LMS notational expression for x.
A label may get assigned to a particular object as an immediate or
eventual consequence of the absorption of an equation that defines that
label, as discussed subsequently in the section on equations. Although a
label may be assigned to any object, it is expected that most labels will
be assigned to nodes; in fact, when XLMS must commit itself as to what
type of object an as-yet-undefined label represents, it will always expect a
node of some kind to be the eventual assignment. Note that it is very
common for a concept with an atomic symbol cue (or for a node with an
atomic symbol specializer) to have a label of the same spelling as its cue
(specializer).

A numeric label (a label that is spelled like a number, e.g., 17, -235.6,
and 1.23E-5) is distinctive as far as assignment is concerned in that it is
intrinsically assigned to some particular "numerically labeled concept",
whose immediate constituents are determined by XLMS.' A numeric

Incidentally, note that a given number might be represented by many distinct
concepts, to say nothing of other objects, within an LMS memory.

7
5

label need never be explicitly assigned,. but when it is explicitly assigned,
it must be assigned to its implicit as,, 6nment.

2.3 Parenthesis-Delimited Expressions

Any node whatever 2 may be represented in LMS notation by a
parenthesized pair, an expression of the form (genus specializer), where
genus and specializer are LMS notational expressions for the the node's
genus and specializer, respectively. For instance, if the genus and
specializer of x are labeled foo and bar, then (foo bar) may be used to
represent x in LMS notation. Note that genus and specializer are usually,
often necessarily, separated by a space.

A concept may be represented in LMS notation by an expression of
the form (ilk*tie cue) or (ilk Mue cue),' where

ilk is a label, an anaphoric abbreviation, or a delimited LMS
notational expression4 for the concept's ilk;

tie is a letter, a label, or a delimited LMS notational expression for
the concept's tie; and

cue is any LMS notational expression for the concept's cue.'

For exzmple, (dog*s bull)' is an LMS notational expression for a concept
that might well represent the species of dog referred to in English by
"bull dog".

2 Note, however, that representing a concept node in this way is not sufficient to
indicate that it is a concept. See a later footnote in this section.

3 A space (or equivalent--see below) is allowed before the asterisk so that a line
break may occur there. This is especially useful when ilk is a large expression.

4 A delimited LMS notational expression is one that is delimited by matching
parentheses or square brackets.

S The concept (ilkAtie cue), where tie is not a letter, is implemented in XLMS as the
node ((ilk tie) cue), marked so as to distinguish it as a concept node. Where tie is a
letter. (ilkftie cue) is implemented as the marked node ((i ($ti4) ae). No assurance
can be given, however, that ((iA tie) cue) will not at some point be changed, even in
XLMS, to, say, (ilk (tie cue)).

6 Or (dog, bull), since in formal publications, (itie cue) could also be written
(ilk,, eO.

6

2.3.1 Primitive Tie Letters

When tie is a letter in an expression of the form (iAl$tie cue) or (ilk
'lie cue), it designates a concept that serves as a primitive tie. Primitive
tie letters are not case-distinguished; thus 's and *S both designate the
same primitive tie. The primitive ties that are predefined in XLMS are
as follows.

*5 species
st stereotype
$1 individual
*r role-in
*u unique-role-in
Sa appositive
*f function
'p partitive

Additional primitive ties may be defined; see the description of define-
primitive-tie.

A primitive tie may be represented per se, in either LISP or LMS
notation, as [*letter]. Thus, for instance, [*r] is both a LISP and an LMS
notational expression for the role-in primitive tie.

2.4 Equations

An equation is of the form a = b, where a and b are LMS notational
expressions. An equation asserts that each of its sides represents the
same object, i.e., it is an eq assertion.' An equation may be used as an
LMS notational expression for the object (in memory) represented by
each of its sides, as is the case, for example, in (president'u U.S. ,
(country*l "U.S.)).

When an equation with 2 label on either side is absorbed, the label is
thereby defined, which means that it will be assigned to the object
represented by the other side of the equation as soon as that object is
determinable, if ever. (Recall that a node represented in terms of labels
is determinable only after all those labels have been assigned.) Where
both sides are labels, this rule applies to each of the labels individually.
If an as-yet-undefined label has been absorbed as an LMS notational
expression, or if the ultimate assignment of an already-defined label is
not yet determinable, the label will have been provisionally assigned to a

re is the primitive LISP predicate that tests whether its two operands both
represent the same object in memory.

7

dummy node. A dummy node is not a node, but may, under certain
circumstances, turn into a node that will be some label's utimate
assignment.

When the left side of an equation is a global label and the right side is
a parenthesis-delimited expression in which the specializer or cue
subexpression is to represent the atomic symbol of the same spelling as
the global label, then that specializer or cue subexpression can be written
as " (pronounced "ditto"). Thus, for example, apple - (fruit*s "apple")
may be abbreviated to apple = (frult*s ").

2.5 Square-Bracket-Delimited Expressions

Any object may be represented within LISP or LMS notation by
enclosing an LMS notational expression for it in square brackets. A
square-bracket-delimited expression appearing in LISP notation typically
represents an object that can be directly (or LISP-dialect-independently)
represented only in LMS notation: a concept, a primitive tie, a sequence,
an attachment relation, the LMS atomic symbol "nil", an object
represented as an absorb-time computation, an atomic symbol with one
or more unusual characters in its spelling, etc. On the other hand,
square-bracket-delimited expressions appearing in LMS notation are
typically bracketed for the same sorts of reasons that lead one to
parenthesize mathematical subexpressions: for clarity; for marking
subexpressions that would not (or might not) be read as subexpressions
because of precedence rules; and for overcoming specific syntactic
restrictions, e.g., that which disallows an (unbracketed) equation as ilk or
tie in an expression of the form (ilkttie cue).

Note that nodes, like atomic numbers, "evaluate to themselves" in
LISP and thus need never be quoted in LISP code. Hence, [1441,
[(dog*s bull)), and [*s] are well-formed LISP forms.

2.6 Complexes

An extension of the square-bracket-delimited form for representing
objects permits the representation of attachments. (It also allows,
somewhat incidentally, an arbitrary number of not-necessarily-related
objects to be separately represented within a single LMS notational
expression.) For example,

[blue c#e (color'r sky))

asserts that (colorer sky) is to be a #e attachment on blue, and that
blue is to be a #c attachment on (colorer sky), where *c and #e are
"attachment relation names"--see below.

An expression of the form'

[sube ct a ...
attachment-specificationI all a12 ...
attachment-secification2 a2, a22 ...

is called a complex, where subject and the aj (of which there must be at
least one) are LMS notational expressions, and where each attachment-
specificationi (if any) specifies one-way attachment, two-way attachment,
or non-attachment, as described below. Whether it appears in LMS or
LISP notation, a complex represents what subject represents-some object
s, say-and also asserts, for each a. for which attachment-specificationi

exists and is other than just *, that the object represented by a. is to be1
an attachment on s and/or ice vers, see below for further details. Note
that all the aiU are absorbed when the complex is absorbed, even those (if
any) for which either i = 0 or attachment-specificationi = ".

2.6.1 Attachment Specifications

An attachment specification is either an attachment relation name, a
reverse-attachment specification, a two-way attachment specification, or
#. An attachment relation name consists of a # prefixing either a single
letter or a normal spelling of three or more characters, e.g. #c or
#characterization. A reverse-attachment specification is like an
attachment relation name except that the # appears as a suffix, e.g. e*
or exemplar#. A two-way attachment specification consists of either (1)
a reverse-attachment specification overlapping an attachment relation
name in such a way that they share a single #, e.g. e#c or
exemplar#characterization, or (2) a # prefixing two letters, each of
which is the letter in some single-letter attachment relation name, e.g.
*ce (which is equivalent to e#c). Note that letters in attachment
specifications are not case-distinguished.

8 The way in which an expression of this type is broken up into lines is irrelevant
to its interpretation. Like all LISP and LMS notational expressions, the complex may
have any combination of spaces tabs, line breaks, 'semi-colon comments" (in
MACLISP), etc. inserted into it wdherewr a Wpace is allwed or ru yrd A space is
allowed, and often required, between adjacent elements of a complex. See the DBNF
Summary of LMS Notation" appendix for complete details.

-

9

An attachment relation name used as (or as part of) an
attachment-specificationi in a complex asserts that the objects reprtsented
by the a1 that follow it are to be attached to what subject represents per
the named relation. Conversely, a reverse-attachment specification used
as (or as part of) an auachment-specificationi asserts that what subject
represents is to be attached to each of the objects represented by the aO
per the corresponding relation. Thus, for example,

[dog #c barker carnivore e# barker carnivore)

asserts that the objects labeled barker and carnivore are to be attached
as characterizations to the object labeled dog, and also that the object
labeled dog is to attached as an exemplar to the objects labeled barker
and carnivore. Note further that either

[dog exemplar4characterizaton barker carnivore)

or

[dog e#c barker carnivore)

would have the same effect on memory (after absorption) as the
preceding notational expression.

The attachment relations that are predefined in XLMS and are not
private' all have both single-letter and spelled-out names. They are u
follows.

#c #characterization
#e #exemplar
#m *metacharacterization
#x #inverse-metacharacterization
#q #equal
#v #value
#r #role-in
#h #has-role
#f Wfunction
#a #applicable-function
#p #predicate-type
#k #Katz-feature
#syntactic-name
*n #semantic-name

' The attachment relations used prirdy by LMS will not be discussed here, eacept
incidentally, since anything private is subject to change without notice.

- 4

I0
tot

Additional attachment relations may be defined; see the description of
declare-attachment-relation.

An attachment relation may be represented in either LISP or LMS
notation by enclosing an attachment relation name for it in square
brackets. Thus, both (*c and [#characterization] are LISP and LMNS
notational expressions for the #characterization attachment relation.
Note that attachment relations evaluate to themselves in LISP and thus
need never be quoted in LISP code.

2.6.2 Anaphorlc Abbreviations

Within the aU in a complex c, the subject of c may be represented
an phorically'0 by some number of consecutive uparrows or colons. An
uparrow anahor consisting of nt consecutive uparrows represents the
subject of the complex or levels up in the nest of square-bracketed
expressions in which it (the uparrow anaphor) appears. For example, in
the LISP form

(absorb
(automobile

[(trunkeu A)

[(interlor*u A)

[(colorsa A) #c (colorse """)m]), ,

the most deeply embedded square-bracketed expression is equivalent to
[(color*u (Interloreu (trunksu automobile))) *c (colorm
automobile)).

The number of colons in a colon anaphor reflects how many levels of
square bracketing the subject being referred to is removed from the
outermost LISP-notation context. Thus a complex that is not itself
embedded in a square-bracketed expression may have its subject
represented as a single colon (:); a complex that is inside one set of
square brackets may have its subject represented as a double colon (::); a
complex that is inside exactly two pairs of square brackets may have its
subject represented as a triple colon (=:); etc. For example, in the LISP
form

10 An aenpqtor is a syntactically simple reference to something expressed or implied
earlier, or higher up, in some structure. Pronouns. for example, are anaphors.

(absorb f:.
(automobile

[(trunk'u:)
[(Interior'u ::)

((colorsu :::) #c (color'u :)JJDJ),
: represents what automobile represents,:: represents what (trunk's :)
represents, and ::: represents what (Interlor'u ::) represents.

Special abbreviations exist for certain LMS notational expressions
involving anaphors. An LMS notational expression of the form (bor a),
where a is an anaphor and b a label or delimited LMS notational
expression, may alternatively be written be. Similarly, an LMS notational
expression of the form (bau a), where a and b are as before, may
alternatively be written ban. Finally, an expression of the form ((b'r
a)'l c), where a and b are as before and where c is either a label other
than a, a delimited LMS notational expression, or a double-quoted
spelling, may be written bac. For example, ((wheeler ::)*I left-front)
could alternatively be written wheel::left-front, and ((colore ") *€
(color', AA)] could be written [color^u #c colorA"'au

2.7 Itemizations

A sequence of more than one element may be represented in LMS
notation as an itemization

al, a2, ..., a,,
where the a, are LMS notational expressions for the elements, in order

A sequence of one element may be represented by a trivial itemization
[a,, where a is an LMS notational expression for the element. (Square
brackets are not really part of a trivial itemization, but they are almost
always used, for clarity if not out of necessity.) The null sequence has
no representation as an itemization, but may be represented either by
or by the label null-sequence.

A sequence whose elements are nodes in canonical order" may be
represented in LMS notation as an order-insensitive itemization at & a2 &

& a,, where the a, are LMS notational expressions for the elements in
any order. An itemized set or "multiset" might well be represented
canonically in LMS in terms of a canonically ordered sequence of its
elements. By using an order-insensitive itemization, such a canonical set

I See the section. in a later chapter, on the caonical ordering of nodes,

j
.~', I

12

or multiset representation can be notationally expressed in terms of its
elements with no dependence on which permutation of its elements is
canonically ordered. For instance, (feature-set*l heavy & rough) and
(feature-set*l rough & heavy) are equivalent, whether heavy
canonically precedes rough or vice versa.

A sequence fragment of one or more elements may be represented in
LMS notation as an itemization

a, 02, ..., a ...

where the ai are LMS notational expressions for the elements, in order,
and where the terminating ... is part of the actual LMS notation. For
example, 2, 3, 5, ... represents the sequence fragment whose elements are
2, 3, and 5, in that order. The null sequence fragment may be
represented by the label

In an itemization, none of the ai may be an equation, because the
comma or ampersand of an itemization has higher precedence than the
equal sign of an equation. Also, an ampersand has higher precedence
than a comma. Thus, for example, [a - b, c & dl would be interpreted
as Ia- Ib, [c& Q m.

2.8 Computational Expressions

Any object x may be indirectly represented within LMS notation (or,
after adding square brackets, within LISP notation) as a comnputational
expression- an LMS notational expression of the form le, where e is a
LISP form in LISP notation that evaluates to x at absorb-time (normally
load-time).

Atomic numbers are readily representable in LMS notation as
computational expressions, e.g., 129 and 14.71E6. 11 LISP's all may be
represented in LMS notation by lull. Computational expressions also
provide yet other LMS notational expressions for atomic symbols; for
instance, 'flre is equivalent, in LMS notation, to "fire".

One disadvantage of representing objects in terms of computations is
that such computations and/or their representations may be
LISP-implementation-dependent.

It Note, incidentally, that numbers in LISP notation in the source text for LMS
modules are interpreted in base ten by default.

13

2.9 Absorption Forms

An expression of the form [% a, a2 ...] appearing in LISP notation is
called an absorption form, and represents not a data object, but rather a
LISP form which, when evaluated, will cause [a, a2 ...I to be absorbed.
The % in the absorption form (which must immediately follow the
opening square bracket) effectively postpones absorb-time until evaluation
time, thus making possible multiple absorption of the LMS notation
within the form.

An absorption form that will (or may be) multiply evaluated typically
contains one or more free variables" that might have different values on
different evaluations of the form. Thus, for example, evaluation of

(loop for x In '(duck gull swan) do [% (blrdss lx) #c water-birdb

has the same effect as the absorption of

U(birdes "duck") #c water-bird]
[(blrd*s "gull") *c water-bird)
[(bird*s "swan") #c water-bird]].

An absorption form may be used as a notation-based constructor.
Instead of using explicit LISP code to construct one or more nodes
(possibly with attachments), one can often use an equivalent (and almost
always more readable) absorption form."

I1 In the MACLISP implementation of XLMS, such free variables must, at present,
be special variables.

1 In the MACLISP implementation of XLMS, there is. at present, no special
provision for efficient compilation of absorption forms. Thus absorption form we
substantially slower to evaluate than equivalent explicit LISP code.

• !!

14

3. Basic LMS Operators

The operators described in this chapter are sufficient for working
experimentally with objects in an LMS memory. For non-experimental
work, more specialized operators might be required, especially to achieve
a high level of operating efficiency.

An operator is described by first displaying a prototype aplicaion for
it, then discussing aspects of its use and behavior, especially those which
are not inferrable from its name and from the dummy names for
operands given in the prototype application in lieu of arguments. The
name of an operator is chosen to suggest both what it does and what it
may return as a value. Dummy names for operands are chosen so as to
convey, as well as possible, assumptions about those operands; an operand
named concept, for instance, may be assumed to be a concept."3 Except
as noted, arguments in applications of LMS operators must be LISP
forms.

Also appearing in this chapter are descriptions of particular
iteraf ion-driving clauses that may be used in loop forms (see TM-169,
"LOOP Iteration Macro" [21). Such descriptions begin with a prototype
iteration-driving clause of the form

(... for variable ...)

where a particular prototype path clause appears after variable. An
actual loop form containing an iteration-driving clause begins with loop
(usually), has a LISP variable name in place of variable, has one or more
actual argument forms appearing within the path clause, and has some
number of other clauses before and/or after the iteration-driving clause.
Evaluation of such a form entails iterated evaluation of its body, with
the specified variable bound, prior to each iteration, to the next value
"along the specified path". Iteration may terminate for any of a number
of reasons, one being that "the end of a path has been reached" (which
may even precede the first iteration). Note that path values may be
lised, in order, by evaluating a loop form containing an appropriate
iteration-driving clause followed by a collect variable clause.

Cavea on operator usage Applying an operator to "bad" operands
(operands that do not satisfy the assumptions made by the operator
about its operands) may lead to arbitrarily serious, and possibly
mysterious, failures.

15 A object being "pnwd* aan operand to an X LNS operator is represented by a
pela in accordance with LISP convention.

'5

3.1 Operators Pertaining to Concepts

(conceptp object)

determines whether or not object is a concept, and returns t or nil
accordingly. In many implementations of XLMS, it is quite costly to
determine that an object is a concept when it is not even known to be
a node.

(concept-nodep node)

is equivalent to (conceptp node), but is faster because it can assume
that its operand is a node. In fact, in some implementations of XLMS,
concept-nodep may be an order of magnitude or more faster, on the V.
average, than conceptp.

(make-concept ilk tie cue)

creates a concept with the specified ilk, tie, and cue, if such a concept
does not already exist in memory. In any case, the specified concept is
returned. Note that creation of a concept could involve nothing more
than turning a non-concept node into a concept node. K
Recall that a particular primitive tie, which in a parenthesis-delimited
LMS notational expression could be specified by just letter, would, as
an argument, be specified by *lZetter.

(ilk concept), (tie concept), and (cue concept)

return the ilk, tie, and cue of concept, respectively. These operations
are trivial to perform in typical implementations of XLMS.

(same-Ilk-and-tie concept-A concept-B)

determines whether or not concept-A and concept-B have both the same
ilk and the same tie, and returns t or nil accordingly. It is equivalent
to (and (eq (ilk concept-A) (ilk concept-B)) (eq (tie concept-A) (tie
concept-))), assuming concept-A and concept-B are free of side effects,
but is substantially faster in many implementations of LMS.

(primitive-tlep tie)
determines whether or not tie is a primitive tie, and returns t or nil

accordingly. Operand tie must be a concept.

Ib

16

(deflne-primitive-tle primitive-tie-letter descriptive-atomic-symbol)

defines the primitive tie which is designated by primitive-ie-letter and
described (and distinguished from other primitive ties) by
descriptive-atomic-symbol. Neither argument is interpreted; both must
be atomic symbols. If one of the arguments has been used previously
to designate or describe a primitive tie, then the other must also have
been used to designate or describe that same primitive tie.

A primitive tie must be defined before LMS notation in which Its
designating letter appears can be absorbed. For descriptions of the
primitive ties that are predefined in XLMS, see the appendix entitled
"Predefined Primitive Ties and Attachment Relations".

3.1.1 The c Relation and Operators that Use It

All but one of the operators described in this section apply to nodes in
general, rather than just to concepts. They are listed here because they r
are applied most frequently to concepts, especially by experimenting
users.

For two arbitrary nodes a and b, a c b iff one of the following
conditions hold:

(1) (genus a) = b, where a s summum-genus;

(2) (genus a) c b, or

(3) (genus a) = (genus b) and (speclalizer a) c (speclalizer b),
where (speclallzer a) and (specializer b) are both nodes.

Where a and b are both concepts, these conditions may be restated"6
as follows:

(1) (ilk a) = b, where a s summum-genus;

(2) (Ilk a) c b, or

(3) (Ilk a) = (Ilk b), (tie a) = (tie b), and (cue a) c (cue b),
where (cue a) and (cue b) are both nodes.

16 This definition of c for concepts is valid only if the following constraint is
observed: given a concept (ilA fie cue), if z is a node such that (iA tie) r x c ik, then z
must oWt be a concept. It is quite unlikely that this constraint would be accidentally
violated.

17

The c relation has the following properties worthy of note:

a c summum-genus, for any node a,

(a (b c)) c (a b) c a,
(il* 11 (i 2*t2 c)) c (il*tI i2) c it, e.g., (color*r (block*l 1)) c

(color*r block) c color;

by condition (3), the condition for derivative subclassification, a set
of nodes (concepts), all of which have the same genus (ilk and
tie), is isomorphic under c to the set of its specializers (cues);

whether a c b holds or not is "memory-independent"; and

(ilk*tie cue) c (ilk tie), if (ilk*tie cue) is implemented either as ((ilk
tie) cue) or as (ilk (tie cue)). .

When a c b, a is said to be an inferior of b (under b), and b is said to
be a superior of a (above a). Many, perhaps most nodes have no
inferiors, but summum-genus is the only node that has no superiors.
The superiors of a node are well-ordered by c. Thus, every node but
summum-genus has an immediate superior,"7 the "least" of its superiors
which exist in memory. If y is the immediate superior of x, then x is an
immediate inferior of y. Note that the immediate inferiors of a node,
and often also its immediate superior, may change as nodes are added to
and removed from memory.

The set of all node/immediate-superior relationships (or, equivalently,
the set of all node/immediate-inferior relationships) determines the
current node tree, a tree of all nodes in memory, with summum-genus as
the root. The node tree is used by XLMS for accessing concepts via
their ilks (or nodes via their genuses) and as the basis for the canonical
ordering of nodes. It is typically also used by LMS-based systems as a
taxonomy of descriptions (a particular kind of abstraction hierarchy) and
hence as a key determinant of inheritance (of attributes and
meta-attributes).

(underp node-A node-B)

tests whether node-A c node-B, and returns t or nil accordingly. (In
earlier versions of LMS, underp was called subclassp and sometimes
subconceptp.)

J In earlier versions of LMS, the immediate superior of a node was referred to as
its "generalizer'.

VI

Is

(underp-or-eq node-A node-B)

tests whether node-A c node-B, and returns t or nil accordingly. For
two arbitrary nodes a and b, a c b iff either a c b or (eq a b). (In
earlier versions of LMS, underp-or-eq was called classp.)

(... for variable being superiors of node ...),

(... for variable being superiors of node under superior ...),

(... for variable being superiors of node under-or-eq superior ...),

(... for variable being node and its superiors ...),

(... for variable being node and Its superiors under superior ...), and

(... for variable being node and its superiors under-or-eq superior ...)

produces the superiors of node (c or c superior, where so specified)
which exist in memory, if any, in c order, with node also produced as
the first value when an and its superiors variant is used. Operand
superior, if present, must be a superior of node, except in the case of
the last variant above, where it must be a superior of or eq to node.
Note that the superiors of a node will typically include non-concept as
well as concept nodes, and are not independent of what nodes exist in
memory. The superiors of a node are trivial to produce in typical
implementations of XLMS.

(... for variable being immediate-inferiors of node ...)

produces the immediate inferiors of node, if any, in canonical order.
Note that the immediate inferiors of a node may change as nodes are
added to or removed from memory. Note also that the immediate
inferiors of a concept are not necessarily, or even frequently, concepts.
The immediate inferiors of a node are easy to produce in typical
implementations of XLMS.

By using the immediate-inferiors for form recursively, it is possible
to visit all concepts in memory inferior to a given node. Observe that
a loop form of the form

(loop for subnode being immediate-inferiors of node

do <process subnode> <recur with subnode as nodo)

will traverse, in "preorder" but excluding node, the node tree subtree

19

whose root is node, and thus will visit every inferior of node." (In
fact, this traversal will visit the inferiors of node in canonical orderl)
Therefore, if <process subnode> is replaced by (cond ((concept-nodep
subnode) <process subnode>)), precisely those concepts which are
inferior to node will be processed.

(look-for-least-superior-concept concept)

returns the least concept x in memory, if any, such that concept c x.
Unless concept is summum-genus, there is such a least concept because
(a) summum-genus is such a concept, and (b) any subset of the
superiors of any node is well-ordered by c. If concept is
summum-genus, nil is returned. Note that the least superior concept
of a concept may change as concepts are added to or removed from
memory.

(least-common-superlor-concept concept-A concept-B)

returns the least concept x in memory such that concept-A c x and
concept-B c x. There is such a least concept because (a)
summum-genus is always such a concept, and (b) any subset of the
superiors of any node is well-ordered by c. Note 'that the least
common superior concept for two concepts may change as concepts are
added to or removed from memory. Note also that "least common
superior concept" is somewhat of a misnomer, since concept-B will be
returned if concept-A c concept-B, and concept-A will be returned if
concept-B c concept-A.

3.1.2 Operators that Look For Concepts

A concept that exists in memory can be reliably accessed via its ilk and
possibly via its cue, but never via its tie. A concept will not be reliably
accessible via its cue only if its cue is a node which has ever had
common-cue attached to it as a metacharacterization. Thus, for
example, the concept (block*f big) may not be accessible via big if [big
#m common-cue] has ever been absorbed. Accessing a concept via its
cue, when possible, is typically faster than accessing it via its ilk. (In
high-performance implementations of LMS, the average time for either of
these "access methods" can be expected to depend logarithmically on how
many concepts in memory share the particular ilk or cue in question.)

IS See Knuth [5], sections 2.3.1 and 2.3.2, for an extended discussion of tree
traversal.

20

In XLMS, access via the ilk involves following a chain of
node-to-immediate-inferior links. Thus, the overall efficiency of this
access path depends on how many immediate inferiors a node has, on the
average. A user can keep this number low by avoiding situations in
memory where a particular ilk/tie combination has been paired with a
large number of distinct atoms used as cues (or where a particular node
used as a genus has been paired with a large number of distinct atoms
used as specializers). Some situations of this type are avoided by using
more specialized ilks (or genuses), and some by using sequences in lieu of
atomic cues (or specializers).

(look-for-concept ilk tie cue)

looks for a concept in memory having the specified ilk, tie, and cue. If
such a concept exists, it is returned; otherwise, nil is returned. Also,
the special variable *least-existing-superior will be set to the least
existing superior of the concept sought (necessarily g ilk), unless
summum-genus itself is being sought, in which case *least-existing-
superior is set to nil. Note that nil is returned even when there
exists a non-concept node in memory which would metamorphose into
the concept sought if (make-concept ilk tie cue) were applied.

(look-for-concept-via-cue ilk tie cue)

looks, via cue, for a concept in memory having the specified ilk, tie,
and cue. If such a concept exists and is accessible via its cue, it is
returned; otherwise, nil is returned. Normally, look-for-concept-
via-cue is used only when it is known that if the concept sought exists
in memory, it will be reliably accessible via its cue. Note that nil is
returned even when there exists a non-concept node in memory which
would turn into the concept sought if (make-concept ilk tie cue) were
evaluated. Operand cue may be a node or an atomic symbol.

(... for variable being concepts-with-cue of cue ...) or

(... for variable being concepts-with-cue of cue under superior ...)

produces, in canonical order, the concepts, if any, that (a) have cue for
a cue, (b) are accessible via their cues, and (c) are c superior (where
so specified). Such an iteration-driving clause is typically used only
when it is known that any existing concept having cue for a cue is
accessible via its cue. Operand cue may be a node or an atomic
symbol.

--qnllf ~ ~ ~ ~ ~ P M : [...."..

21

3.2 Operators Pertaining to Attachments

Whenever there Is at least one attachment on a node x involving a
particular attachment relation r, there exists a zone for r on x, which
contains all such attachments involving r. A zone may be thought of
either as a collection of attachments or as a collection of attached
objects. Note that attachments can occur on all nodes, not just on
concepts, and that attachments on nodes are not necessarily permanent.

The attachments (attached objects) constituting a zone are always
well-ordered according to some attachment-relation-dependent rule. In
LMS, the most common rule (though it can apply only to zones that can
contain only nodes) is that the attached objects are always in canonical
order. Where this rule does not apply, attachments are typically kept
either in order of attachment or in reverse order of attachment.

In most zones, a particular object may be the attached object in at
most one attachment, but in an #sequence-element"1 zone, for example,
a given object may participate in any number of attachments.

An attachment relation argument may be specified as an attachment
relation name in square brackets. Thus, for example, one might write
(make-attachment [#c] [scientist] person).

(make-attachment attachment-relation object node)

attaches object to node per attachment-relation, and returns object,
provided either (a) such an attachment is not already present or (b)
more than one such attachment is allowed for attachment-relation.
Otherwise, nothing is done, and nil is returned.

Attachment of a new first object in a zone is accomplished by
replacing the first object, after first inserting a copy of it after it-thus
preserving the location of the zone at the expense of a somewhat
peculiar behavioral interaction with zone element iteration.

(detach-if-present attachment-relation object node)

eliminates an attachment of object to node per attachment-relation, and
returns object, if such an attachment exists. If there is more than one
such attachment, the first in the zone is eliminated. If there is no such
attachment, nothing is done and nil is returned.

19 #sequence-element is a name for an attachment relation used privately by LMS.

i7

22

Detachment of the first object in a zone, when there is more than one,
is accomplished by replacing the first by a copy of the second, then
deleting the second-thus preserving the location of the zone at the
expense of a somewhat peculiar behavioral interaction with zone
element iteration.

3.2.1 Operators that Get or Look For Attachments

(get-nth-attachment n attachment-relation node)

returns the nth attached object in the zone for attachment-relation on
node. Operand n must be an atomic small integer (a "fixnum" in
MACLISP), and node must have a zone for attachment-relation
containing at least n attachments.

(look-for-attachment attachment-relation object node)

looks to see whether object is attached per attachment-relation to node.
If so, object is returned; if not, nil is returned. Operand object may be
any object that could validly be attached per at achment-relation to
any node. Note that look-for-attachment can succeed only if object
itself is found.

(look-for-attachment-under-or-eq
attachment-relation node-to-be-under-or-eq node)

looks for any node c node-to-be-under-or-eq that is attached per
attachment-relation to node. If there is just one such node, it is
returned; if there are more than one, the first in the zone is returned;
if there are none, nil is returned. This operator may be used only if
zones for attachment-relation contain only nodes.

(look-for-origin node)

returns an object representing, and possibly describing, the origin of
node, if known.2 If the origin of node is unknown (that is, not
recorded in memory), nil is returned.

2iIn the current MACLISP implementation of XLMS, the origin of a node is
known if and only if it is a concept or sequence.

23

(... for variable being each r of node ...),

(... for variable being each r of node under superior ...),

(... for variable being each r of node under-or-eq superior ...),

(... for variable being node and each r ...

(... for variable being node and each r under superior ...), or

(... for variable being node and each r under-or-eq superior ...)

produces the objects (c or c superior, where so specified) attached per
attachment relation r to node if any, in order of their appearance
within the zone for r, with node also produced as the first value when
an and each variant is used. A particular object might be produced
more than once if it is the attached object in more than one
attachment. An under or under-or-eq subclause may be used only if
zones for the attachment relation r contain only nodes.

(zone-present attachment-relation node)

determines whether or not there is a zone present for attachment-
relation on node (or, equivalently, whether or not there is at least one
object attached per attachmeni-relation to node), and returns t or nil
accordingly. This test, which is very fast in high-performance
implementations of LMS, may be used to avoid unnecessary executions
of loop forms of the form (loop for variable being each
attachment-relation of node ...).

3.2.2 Operators Pertaining to Value Zones

(get-value node-with-value-zone)

gets the first (and typically only) attached object in the #value zone
of node-with-value-zone. It is equivalent to (get-nth-attachuent I
[#value] node-with-value-zone), but is faster in typical implementations
of XLMS, where the #value zone of a node is trivially accessible.

(replace-value node-with- value-zone new-value)

replaces the first (and typically only) attached object in the #value
zone of node-with-value-zone by new-value. This operation is trivial to
perform in typical implementations of XLMS, where the #value zone
of a node is trivially accessible.

24

3.2.3 Operators Pertaining to Attachment Relations

Attachment relations have numbers as well as names: each attachment
relation is identified by its distinct attachment relation number, a
non-negative integer. When nodes are implemented in such a way that
zones must appear in some order or other (as is the case in existing and
planned implementations of LMS), the zones are kept in order of
increasing attachment relation number. Zones with low attachment
relation numbers will typically be faster to access than zones with high
numbers. Some attachment relation numbers are reserved for relations
declared by LMS itself, specifically, 0-11, 15-23, 31, and 35.21

(attachment-relationp object)

determines whether or not object is an attachment relation, and returns
t or nil accordingly.

(declare-attachment-relation
attachment-relation-number attachment-relation-full-name
attachment-relation-single-letter-name-or-nil zone-features)

defines the attachment relation identified by attachment-relation-
number. One or two names for the relation are specified, as atomic
symbols, by arguments attachment-relation-full-name and attachment-
relation-single-letter-name-or-nil, the latter being nil to indicate the
absence of a single-letter name. Except for a prefix #, an attachment
relation name must be normally spelled. The attachment-relation-
full-name argument must have three or more characters in addition to
the prefix #.

The zone-features argument is either nil or a list of atomic symbols
that act as zone feature indicators. Possible zone feature indicators in
LMS are: concepts-only, nodes-only, canonical-order (which implies
nodes-only), duplicates-allowed (meaning that more than one
attachment in a zone of this type may have the same attached object),

21 In high-performance implementations of LMS, where each node has a special
substructure to indicate what zones are present on it, operating efficiency may be
considerably degraded when an attachment relation has been declared with a number
greater than or equal to the number of digit bits in the simplest kind of atomic number
(36 in the case of PDP-10 MACLISP, and 24 in the case of the M.I.T. LISP Machine).
Thus, a user of LMS who is, or might ultimately be, concerned with efficiency should
declare few attachment relations. Also, LMS users concerned with space efficiency
should be aware that the amount of space required for nodes is minimized when the
*origin attachment relation (used privately by LMS) is the highest-numbered
attachment relation.

Integral (meaning that a zone of this type is to be treated as an
integral whole), and a-list (meaning that only "list cells" an be
attached using this attachment relation, and that no two such list cells
in a given zone of this type may have the same car).

Note that arguments in a declare-attachucnt-relation application are
not interpreted. Thus, for instance, one might write

(declare-attachment-relation
10 /#possible-cause /#z (concepts-only camonlcal-order)).

26

4. Specialized LMS Operators

The operators described in this chapter are more specialized than those
described in the preceding chapter.

4.1 Operators Pertaining to Sequences and Seq. Fragments

Sequences and sequence fragments are used primarily as cues of
concepts and as elements of larger sequences and sequence fragments,
though they are also usable as independent objects and as specializers of
nodes that are not concepts, sequences, or sequence fragments. However,
a sequence or sequence fragment must neer (except privately by LMS)
be used as the ilk or tie of a concept, or as the genus of a node.

No sequence is ever an inferior of another sequence. But a sequence
can be an inferior of a sequence fragment, and one sequence fragment
can be an inferior of another. Specifically, a sequence a, a2, ..., a, or a
sequence fragment a,, ,..., a, ... is an inferior of, or eq to, a sequence
fragment b1, b2, ..., b, ... if, and only if,

(1) m <n rf

(2) a, = bi for i = l, 2, ..., m-l; and

(3) either am c bm or am = bn.

Thus, for example, [a, (b*p (c*t d)), "e"] c [a, (b*p (c*t d)), "e", ...I c
[a, (b*p (c*t d)), ...] c [a, (b*p c), ...] c [a, b, ...] c [a, ...) c [....
Note that every sequence is an inferior of [...].

A sequence that exists in memory can be reliably accessed always via a
list of its elements, and sometimes via certain individual ones of its
elements. A sequence will not be reliably accessible via a particular one
of its elements only if that element (a) is an atomic symbol or (b) is a
node which at some time has had common-element attached to it as a
metacharacterization. Thus, for instance, the sequence ["foo", "bar"] is
never accessible via either element alone, and [henry, the, eighth) may
not be accessible via the if [the #m common-element) has ever been
absorbed. Accessing a sequence via an individual element, when possible,

is typically taster than accessing it via a list of its elements. (In
high-performance implementations of LMS, the average times for either
of these access methods can be expected to depend logarithmically on
how many sequences in memory share the individual element or the
particular initial series of elements.)

27

Sequences have a distinctive dynamic property: the specialization that
names a sequence may change as other sequences or sequence fragments
are added to or removed from memory. Therefore, the genus and
specializer of a sequence can change over time This instability stems
from XLMS's memory-saving practice of choosing naming specializations
for sequences that are no more specific than is necessary to make every
sequence have no inferiors in memory. As memory changes, the
specialization that names a sequence may need immediate replacement,
because it has just become insufficiently specific, or, conversely, it may
become eligible for replacement, because it has become overly specific.

Sequence fragments exist in LMS primarily to provide a taxonomic
structure above sequences, and secondarily to provide a completely
reliable and rather uniformly efficient access method for sequences that
does not involve access via elements.

(LMS-sequencep object)

determines whether or not object is a sequence, and returns t or nil
accordingly. (This operator would have been called "sequencep"
except for the fact that a primitive operator of that name exists in
certain implementations of LISP that LMS might someday run under.)

(sequence-f ragmentp object)

determines whether or not object is a sequence fragment, and returns t
or nil accordingly.

(sequence-nodep node)

is equivalent to (LMS-sequencep node), but is faster because it can
assume that its operand is a node. In fact, in some implementations of
XLMS, sequence-nodep may be an order of magnitude or more faster,
on the average, than LMS-sequencep.

(sequence-fragment-nodep node)

is equivalent to (sequence-fragmentp node), but is faster because it
can assume that its operand is a node.

(sequence-or-fragiment-nodep node)

is equivalent to (or (sequence-nodep node) (sequence-fiagment-nodep
node)), but may be significantly faster, because it is also equivalent to
(underp-or-eq node [...])-a very fast operation in certain
implementations of XLMS.

28

(make-ueq.ence list-of-elements)

converts list-of-elements into a sequence. This sequence may have
existed previously. Note that only nodes and atomic symbols other
than nil may appear in list-of-elements.

(LMS-append series-of-elements, series-of-elemets2 ...)

appends its operands to produce a series-of-elements result. (A
series-of-elements operand or result is either a list, a sequence, a
sequence fragment, or nil.) The type of the /at operand determines
the type of the result. If the last operand is a sequence or sequence
fragment, the result will be a (possibly null) sequence or sequence
fragment accordingly; otherwise, the result will be a list or nil. A last
operand which is a list becomes part of the result, so that
LMS-append will strictly subsume the standard LISP operator append.
Thus, for instance, (LMS-append [a, b) nil [c, ...] '(d e)) would
return a list ([a] [b] [c) d e), the two-element tail fragment of which
would be identically the last operand.

Note that [], [...j, or nil may be used as a last argument to force a
particular type of result, without affecting the elements in the result.
Hence LMS-append may be used to interconvert sequences, sequence
fragments, and lists. For example, (LMS-append sequence [...1) would
convert sequence into the corresponding sequence fragment. Also,
(LMS-append list-of-elements []) is equivalent to (make-sequence
list-of-elements), though the latter would undoubtedly be faster.

When LMS-append is used to add one or more elements to a sequence
or sequence fragment, the result is necessarily a different object
(though not necessarily a newly created one), since neither a sequence
nor a sequence fragment can ever suffer a change of elements. Finally,
note that when the result of an LMS-append operation is to be a
sequence or sequence fragment, all elements of list operands must be
either nodes or atomic symbols other than nil.

(get-nth-element-of-sequence n sequence)

returns the nth element of sequence. Operand n must be an atomic
small integer, and sequence must have at least n elements.

(get-last-element-of-sequence non-null-sequence)

returns the last element of non-null-sequenc.

29

(get-last-element-of-sequence-fragment non- null-sequence-fragment)

returns the last element of non-null-sequence-fragment. In typical
implementations of XLMS, this operation is trivial to perform.

(truncate-sequence-fragment non-null-sequence-fragment)

returns the sequence fragment that results from removing the last
element of non-null-sequence-fragment. For example, (truncate-
sequence-fragment [a, b, c, ...]) yields [a, b, ...J. In typical
implementations of XLMS, a truncate-sequence-fragment operation is
trivial to perform.

(look-for-sequence list-of-elements)

looks for a sequence in memory having the same elements (in the same
order) as list-of-elements. If such a sequence exists, it is returned;
otherwise, nil is returned. Also, the special variable *least-existing-
superior will be set to the least existing superior of the sequence
sought (necessarily S [...]). Note that only nodes and atomic symbols
other than nil may appear in list-of-elements.

(look-for-sequence-via-element element list-of-elements)

looks, via element, which must be a member of list-of-elements, for a
sequence in memory having the same elements (in the same order) as
list-of-elements. If such a sequence exists and is accessible via element,
it is returned; otherwise, nil is returned. Normally, look-for-
sequence-via-element is used only when it is known that if the
sequence sought exists in memory, it will be accessible via element.
Note that only nodes and atomic symbols other than nil may appear
in list-of-elements.

(look-for-sequence-fragment list-of-elements)

looks for a sequence fragment in memory having the same elements (in
the same order) as list- of elements. If such a sequence fragment exists,
it is returned; otherwise, nil is returned. Also, except when [...] is
returned, the special variable *least-existing-superior will be set to
the least existing superior of the sequence fragment sought (necessarily
S[...]). Note that only nodes and atomic symbols other than all may

appear in list-of-elements.

30

(... for variable being elements of sequence ...)

produces the elements of sequence, if any, in order.

(... for variable being sequences-with-element of element ...) or

(... for variable being sequences-with-element of element under sf...)

produces, in canonical order, the sequences, if any, that (a) have
element as an element, (b) are accessible via element, and (c) are c sf
(where so specified). Such an iteration-driving clause is typically used
only when it is known that any existing sequence having element for an
element is accessible via element. Note that element must be either a
node or an atomic symbol, that sf must be a node, and that no
sequences will be produced if a non-sequence-fragment sf is specified.

(sequence-length sequence)

returns the length of sequence, as an atomic small integer.

(sequence-fragment-length sequence-fragment)

returns the length of sequence-fragment, as an atomic small integer.
Note that (sequence-fragment-length [...J) is 0.

4.2 Low-Level Operators Pertaining to Nodes

The operators to be described in this section are needed only for
working with incidental nods nodes that are not concepts, sequences, or
sequence fragments. Only a few of the constructs described in this and
the preceding chapter can produce incidental nodes.

(1) Applications of operators described in this section can produce
incidental nodes.

(2) A being superiors or being Immediate-inferiors iteration-driving
clause can (and usually will) produce incidental nodes, though such nodes
would typically be used only as "stepping stones" to non-incidental nodes.

(3) A being each iteration-driving clause could produce incidental
nodes, but only insofar as they have been introduced and attached
earlier.

(4) A being elements iteration-driving clause could produce incidental
nodes, but only insofar as they have been introduced and used as
sequence elements earlier.

31

Therefore, a user who avoids introducing incidental nodes (through
notation, by atypical use of being superiors or being
immediate-inferiors iteration-driving clauses, or by use of operators
other than those described in this and the preceding chapter) may well
have no need for the operators presented in this section.

Any node that exists in memory can be reliably accessed via its genus
or via any isogeneric superior (a superior of the node that is an inferior
of its genus); however, a node cannot be reliably accessed via its
specializer per se. (If the node is a concept or sequence, there are also
other methods for accessing it; see the sections entitled "Operators
Pertaining to Concepts" and "Operators Pertaining to Sequences and
Sequence Fragments"). In XLMS, access via the genus or an isogeneric
superior involves following a chain of node-to-immediate-inferior links,
using Immediate-inferiors iteration paths. Thus, the overall efficiency
of this access path depends on how many immediate inferiors a node has,
on the average. See the subsection entitled "Operators that Look for
Concepts" for a discussion of how a user can keep this number low.

(nodep object)

determines whether or not object is a node, and returns t or nil
accordingly.

(make-node genus specializer)

creates a node with the specified genus and specializer, if such a node
does not already exist in memory. In any case, the specified node is
returned.

Creating a node consists of first creating a structurally appropriate
protonode, then adding it to the node tree (that is, making it accessible
via genus), at which point it ceases to be a protonode. When the
public special variable *create-common-superlors-spontaneously? is
non-nil, creating a node can entail the spontaneous creation of
additional nodes which, at creation time, have at least two immediate
inferiors. Note that make-node will not, under any circumstances,
create a concept, though it may return an already existing one.

(mnke-node-given-isogeneric-superior isogeneric-superior specializer)

is equivalent to (make-node (genus isogeneric-superior) specializer), but
is faster because accomplishing the latter operation consists of
accomplishing the former operation after first moving down the node
tree from (genus isogeneric-superior) to isogeneric-superior. The

32

operands must be such that specializer c (speclalizer isogeneric-
superior). The node made will be an inferior of isogeneric-superior.
Note that this operator depends on the c relation.

(genus node) and (speclalizer node)

return the genus and specializer of node, respectively. These operations
are trivial to perform in typical implementations of XLMS. They can
depend on the state of memory only when node is a sequence; see the
section entitled "Operators Pertaining to Sequences and Sequence
Fragments".

(immediate-superior node)

returns the immediate superior, if any, of node, the least node x in
memory such that node c x. Unless node is summum-genus, there is
such a least node, because any subset of the superiors of any node is
well-ordered by c. If node is summum-genus, nil is returned. Note
that the immediate superior of a node may change as nodes are added
to or removed from memory. In typical implementations of XLMS,
this operation is trivial to perform.

(least-common-superior node-A node-B)

returns the least node x in memory such that node-A c x and node-B g
x. There is such a least node because (a) summum-genus is always
such a node, and (b) any subset of the superiors of any node are
well-ordered by c. In graph-theoretic terms, the least common superior
of two nodes is the root of the smallest subtree of the node tree that
includes them both. Note that the least common superior of two
r,,odes may change as nodes are added to or removed from memory.
Ncte also that "least common superior" is somewhat of a misnomer,
since node-B will be returned if node-A c node-B, and node-A will be
returned if node-B ; node-A.

(look-for-node genus specializer)

looks for a node in memory having the specified genus and specializer.
If such a node exists, it is returned; otherwise, nil is returned. Also,
the special variable *least-existlng-superlor will be set to the least
existing superior of the node sought (either genus or an isogeneric
superior of the node sought), unless summum-genus itself is being
sought, in which case *least-existing-superior is set to nil.

(look-for-node-glven-isogenerlc-supcrlor sogeneric-superior specializer)

is equivalent to (look-for-nodc (gentis i 'generic-superier) specializer),
but is faster because accomplishing the latter operation consist5 of
accomplishing the former operation after first moving down the node
tree from (genus isogeneric superior) to isogeneric-superior. The
operands must be such that specializer c (specializer
isogeneric-superior). The node made will be an inferior of
isogeneric-superior. Note that this operator depends on the c relation.

4.3 The Canonical Ordering of Nodes

People (and computers) have an easier time recognizing, comparing,
and "understanding" collections that are consistently organized or, better
yet, predictably organized. In LMS, collections of nodes are usually kept
in canonical order when there is no specific reason to keep them in some
other order. Canonically ordered collections of nodes are always
consistently organized, and are often predictably organized as well.

Throughout this section, < will be used to denote the canonical order
relation on nodes. The use of < is appro'riate because the canonical
ordering of nodes is a total ordering: for an) two distinct nodes a and b,
either a < b or b < a. Which of these possibilities obtains may depend
upon the past history of the memory that contains a and b (see below),
but it will in any case continue to obtain as long as both a and b remain
in that memory.

For two arbitrary nodes a and b, a < b iff one of the following
conditions (somewhat parallel to those that define the c relation) hold:

(1) a = (genus b), where b * summum-genus;

(2) a < (genus b);

(3) (genus a) c (genus b) and (genus a) < b, or

(4) (genus a) = (genus b) and either

(a) (speclalizer a) < (speclalizer b), where (speclallzer a)
and (speclalizer b) are both nodes, or

(b) (speclalizer a) is an atomic symbol and (speclalizer b) is
a node, or

(c) (speclalizer a) and (speclalizer b) are both atomic
symbols and a was created before b.

34

Where a and b are both concepts, these conditions may be restated"
as follows:

(1) a = (ilk b), where b e summum-genus;

(2) a < (Ilk b);

(3) (ilk a) c (ilk b) and (Ilk a) < b;,

(4) (ilk a) = (ilk b) and (tie a) < (tie b); or

(5) (ilk a) = (ilk b), (tie a) = (tie b), and either

(a) (cue a) < (cue b), where (cue a) and (cue b) are both
nodes, or

(b) (cue a) is an atomic symbol and (cue b) is a node, or

(c) (cue a) and (cue b) are both atomic symbols and a was
created before b.

Condition (5c) above says that sets of concepts having a common ilk
and tie and distinct atomic symbol cues are canonically ordered according
to their age rather than, say, an alphalessp23 ordering of their cues.
(Condition (4c) makes a similar statement about nodes in general.) This
permits a concept taxonomist to impose a particular canonical ordering
on such a set s, which in turn will determine "derivatively" (see property
2 below) the canonical ordering of any set of nodes that all have the
same naming specialization except in some one position where different
members of s appear. (XLMS itself takes advantage of this to get the
canonical ordering of positive-integer-labeled concepts to correspond to
numerical order.)

The canonical or zring of nodes in a node tree can be defined
intuitively as the , fder in which they would be visited during a preorder
traversal of the tree, where nodes having a common immediate superior s
are visited in the following order: first those with atomic symbol
specializers, in order of creation; then those with nodal specializers and
genus s, ordered according to the canonical ordering of their specializers;
and finally those with nodal specializers and a genus other than s, ordered

22 This defr,'tion of < for concepts is valid only if the followiog constraint (also
noted in the definition of c for concepts) is observed: if (ilk*tie cue) is a concept, and if
x is a node such that (ilk tie) c x c ilk, then x must not be a concept. Furthermore, if
(ilkAtie cue) were to be implemented as (ilk (tie cue)), condition (4) would have to be
revised for the cases of (tie a) r- (tie b) and (tie b) c (tie a).

23 alphalesap is a primitive LISP predicate used for alphabetic and lexicographic
ordering.

35

according to the canonical ordering of their specializers.

The canonical order relation on nodes has the following useful
properties.

(1) If a < b in a given state of the memory containing a and b, then it
will remain the case that a < b as long as both a and b remain
continuously in that memory.

(2) For any two nodes x and y whose naming specializations differ
only in that x has xc where y has yc, x < y if xc < yc" For example, if
little < big, then (block*f little) < (block*f big) and ((block*f
iittle)*u scene-I) < ((block*f big)*u scene-i).

(3) Canonically ordered collections of nodes are often predictably
organized.

(4) In all canonically ordered collections of nodes, the nodes, if any,
that are inferior to a given node will appear in the same "relative
position". Thus, simple common-superior matching in such collections
may be efficiently accomplished using binary search and parallel scanning
techniques. This is especially important in serial-machine
implementations of LMS, of which XLMS is an example.

(5) The canonical order relation is useful in defining canonical
representations. For example, the canonical representation of an itemized
set might be a concept, the cue of which is a sequence having the set
elements in canonical order.

(6) A < or c test can be performed trivially when both operands are
located in CO-L TM ("canonically-ordered long-term memory"), an area of
memory wherein nodes are kept in canonical order with "subtree extent
pointers". For <, an address comparison suffices. For c, an address
range test suffices.2 The address range test is based on the following
simple theorems relating c and <: (1) b c a implies a < b, (2) a < b < c
and c c a together imply b c a.

(beforep node-A node-H)

tests whether node-A < node-B, that is, whether node-A precedes
node-B in the canonical ordering of nodes, returning t or nll
accordingly. Note that beforep, as well as many operators that
depend on beforep, can be expected to be relatively slow when most
nodes in memory are not in LTM.

24 See Knuth [51 section 2.3.3 and exercise 12 of section 2.4.

36

(beforep-or-eq node-A node-B)

tests whether node-A < node-B, and returns t or nil accordingly. For
two arbitrary nodes a and b, a < b iff either a < b or (eq a b).

4.4 Operators Pertaining to Atomic Symbols

Atomic symbols are used in XLMS to represent lexical units (words,
phrases, affixes, etc.), characters, and labels. Atomic symbols that
represent lexical units typically appear in memory as concept cues and
sequence elements.

(make-character-code character-or-character-name)

converts character-or-character-name into a character code (an atomic
small integer). The character-or-character-name operand is either a
single-character atomic symbol or a character name (one of the atomic
symbols eof, bell, backspace, tab, linefeed, formfeed, newline, or
space). The character-code result must be interpreted with respect to
a particular implementation-dependent character code set. Any such
character code set must be such that (a) the codes for digits are
consecutive and in numerical order, (b) the codes for lower-case letters
are consecutive and in alphabetical order, and (c) the codes for
upper-case letters are consecutive and in alphabetical order.

Through the use of make-character-code, character codes can be
represented code-set-independently. For example, [l(make-character-
code 'tab)], in LISP or LMS notation, represents the code for a tab
character, in any code set.

(make-character character-code)

converts character-code into a single-character atomic symbol. The
character-code operand is interpreted with respect to a particular
implementation-dependent character code set.

(make-LMS-atomic-symbol atomic-symbol)

converts atomic-symbol to the corresponding LMS atomic symbol.
(This would be an identity operator if it did not map LISP's nil into
LMS's "nil".)

37

(normal -spellingp atomic-symbol)

determines whether or not atomic-symbol is normally spelled, and
returns t or nil accordingly. In many implementations of LMS, this
operation is very quick to perform when atomic-symbol is being used
to represent a global label.

(make-global-label -assignment global-label object)

assigns the global label represented by global-label, an atomic symbol,
to object, superceding any prior assignment of the label. The
global-label operand must have the same spelling as the global label it
represents, and thus must be normally spelled.

(look-for-global-label object known-to-be-a-node)

looks for a global label assigned to object. If object is a node and such
a global label exists, the atomic symbol having the same spelling is
returned; otherwise, nil is returned. If known-to-be-a-node? is non-nil,
object must be a node.

(list-global-labels assignment-selection-predicate? alphabetize?)

returns a (possibly empty) list of atomic symbols representing global
labels, arranged in alphabetical order if alphabetize? is absent or
non-nil. The elements of this list represent, without duplication, all
global labels assigned to objects in memory that pass the following
selection test: a global label passes if assignment-selection-predicate? is
absent or nil or if assignment-selection-predicate? applied to the
assignment of the label returns a non-nil value. A non-nil assignment-
selection-predicate? must be "funcallable" with one operand. Note that
the second operand of list-global-labels is optional, as is the first
when the second is not present.

4.5 Operators Pertaining to Numerically Labeled Concepts

Numerically labeled concepts are canonical representations of numbers
as concepts. As might be expected, every numerically labeled concept
has a numeric label (in fact, arbitrarily many numeric labels, since a
numeric label may have arbitrarily many leading zeros). A numerically
labeled concept represents the number expressed by its numeric labels.

No particular details of the specializations that name numerically
labeled concepts will be provided here. However, it may be assumed that
the canonical ordering of positive-integer-labeled concepts corresponds to
numerical order.

38

To do arithmetic and comparison operations on numerically labeled
concepts, convert them to atomic numbers first. For example, to
determine whether two numerically labeled concepts m and n
representing small integers differ by less than ten, do, in MACLISP,

(< (abs (- (make-atomic-number m) (make-atomic-number n))) 10).2

Note that atomic numbers, though relatively economical26, may not, for
reasons of uniformity, be used as ilks, ties, cues, genuses, specializers, or
attached objects in concepts-only or nodes-only zones. But note that
atomic numbers can be attached to nodes as values.

Within an LMS-based system, one might find, in addition to atomic
numbers and numerically labeled concepts, many other forms of
representation for numbers; in fact, one might find many different forms
of representation for numbers as concepts.

(numerlcally-labeledp node)

determines whether or not node is a numerically labeled concept, and
returns t or nil accordingly. Note that the operand must be a node.

(numerically-spelledp atomic-symbof)

determines whether or not atomic-symbol is numerically spelled, and
returns t or nil accordingly. For a precise specification of the syntax
of numeric spellings, see the appendix entitled "BNF Summary of LMS
Notation".

(make-atomic-number numerically-labeled-concept)

converts numerically-labeled-concept into an atomic number. This
atomic number may have existed previously, but the mere existence in
memory of a suitable atomic number to return does not ensure that it,
rather than some newly created equivalent atomic number, will be
returned. In many implementations of XLMS, this operation is trivial
to perform.

25 Not* that numbers in LISP notation in the source text for LMS modules are
interpreted in base ten by default.

26 In XLMS, numerically labeled concepts are roughly an order-of-magnitude
costlier to create and keep in memory than are atomic numbers.

I

39

(make-numerlcally-habeled-concept alomic-numbr)
converts atomic-number into a numerically labeled concept. This
operation can be costly to perform, especially when the concept to be
returned does not already exist in memory.

iv

I.

Ip

40

Appendix I - DNF Summary of LMS Notation

In the variant of BNF used below, terminal symbols appear in
boldface. Curly brackets enclose optional or repeatable items, where
absence of a suffix means optional, an *suffix means optional or
repeatable any number of times, and a + suffix means repeatable any
number of times.

LMS-notation-as-LISP-expression
square-bracketed-expression I absorption-form

square-bracketed-expression
complex I [subject) I [trivial-itemizationJ

complex :=[subject body-of-complexJ

absorption-form
[% subject lbody-of-complexj] I [% trivial-itemization)

subject :=expression I *primitive..tie-letter Iattachment-relation-namne

body-of-complex :=((attachment-specification) expression)+

expression :-unit-expression I equation I non-trivial-itemization

equation :=side = side
global-label - (ilk-expression~tie-expression "
global-label - (genus-expression)

side :=item I non-trivial-itemization

non-trivial-itemization ::(item J)+ item I (item J)+ .

trivial-itemization :=item,

item :=unit-expression I order-insensitive-itemization

order-insensitive-itemization :=(unit-expression &)+ unit-expression

unit-expression root-expression I double-quoted-spelling I
anaphoric-abbreviation Icomputational-expression

root-expression label I delimited-expression

delimited-expression
square-bracketed-expressionI
(ilk-expression*tie-expression cue-expression)
(genus-expression specializer-expression)

41

ilk-expression label Idelimited-expression Ianaphoric-abbreviation
tie-expression primitive-tie-letter I root-expression

primitive-tie-letter :=letter

cue-expression :=expression I trivial-itemization

genus-expression :=expression

specializer-expression :=expression Itrivial-itemization
anaphoric-abbreviation

I:+ root-expression(:I+finstance-specifierI

instance-specifier :=root-expression I double-quoted-spelling I U

computational-expression ILISP-form

attachment-specification
attachment-relation-name I reverse-attachment-specification
two-way-attachment-specification I#

attachment-relation-name :=#attachment-relation-name-root

reverse-attachment-specification :=attachment-relation-name-root*

two-way-attachment-specification
attachment-relation-name-root#attachment-relation-nine-root
#attachment-relation-letter attachment-relation-letter

attachment-relation-name-root
attachment-relation-letterI
normal-character normal-character inormal-character)+

attachment-relation-letter :=letter

label :=global-label I local-label

global-label :=normal-spelling

local-label ::Snormal-spelling

double-quoted-spelling:=
#@normal-spellingi"I I ""Icharacter-in-spelling)*"

character-in-spelling :=" I any-character-but-double-quote

normal-spelling :: normal-characterl+

normal-character letter Idigit -I.'

42

letter lower-case-letter I upper-case-letter

lower-case-letter a b I I z
upper-case-letter A IB IZ
digit ::= O iI ... 19

spelling ::= label I double-quoted-spellingI
attachment-specification I primitive-tie-letter

opening-delimiter [(
closing-delimiter :])

connective : & K

numeric-label ::= numeric-spelling

numeric-spelling ::= integer-spelling I number-with-decimal-point I
number-in-scientific-notation

integer-spelling ::= [-fIdigitj+

number-with-decimal-point ::= {-}Jdigit*.{(digit)+

number-in-scientific-notation
number-with-decimal-point e integer
number-with-decimal-point E integer

As a general rule, at least one space-or-equivalent must appear between
adjacent spellings, and any number of space-or-equivalents may optionally
appear before or after any terminal character that is not part of a
spelling. Exceptions to this rule are: (a) a space-or-equivalent may not
appear after an *, within a [%, or between components of an anaphoric-
abbreviation; (b) at least one space-or-equivalent must appear before a
bare " or before a I that is not immediately preceded by an opening-
delimiter or a connective; (c) at least one space-or-equivalent must appear
before a : that is not immediately preceded by an opening-delimiter, a
connective, or the root-expression in an anaphoric-abbreviation; and (d)
at least one space-or-equivalent must appear after a : that is not
immediately followed by an 0, a connective, a closing-delimiter, or an
instance-specifier. Note that any number of space-or-equivalents may
appear before an *, in conformance with the general rule.

The syntax given above is not quite complete and precise, in that: (a)
LISP-form, space-or-equivalent, and any-character-but-double-quote are h
left undefined; (b) no rules are given for space-or-equivalents before or
after LISP-forms; (c) a trivial-itemization can appear before the] of a
complex or, in some contexts, as a side (of an equation); (d) an item

43

terminating a non-trivial-itemization cannot be the label ... ; and (e) a
root-expression appearing as an instance-specifier cannot be the 1at~el a or
U.

44

Appendix 11 - The MACLISP Implementation of XLMS

The MACLISP implementation of XLMS may be invoked in ITS27 by
typing either XLMS"K or :XLMS followed by a carriage-return. After
XLMS has announced its version number and has printed an asterisk, the
user may proceed to enter forms online as he or she would to the
read-eval-print loop of LISP.

Square-bracket-delimited expressions representing concepts, sequences,
sequence fragments, nodes, dummy nodes, or attachment relations may be
typed online, because such objects "evaluate to themselves" in LISP.
Such an object is printed online as a square-bracket-delimited expression
that normally reveals the object's immediate constituents, its labels (if
any), and selected objects associated with it (e.g., attachments on it).
Thus, to "examine" such an object, a square-bracket-delimited expression
representing it need only be typed online.

If a negative "fixnum", -n, is typed online, the nth previous object
printed online will be reprinted. If a positive fixnum n is typed online,
the most-recently-printed nth component of a square-bracket-delimited
expression will itself be printed online.

In typing LMS notation, the user may sometimes find that the "rubout
processing" provided by XLMS (perhaps inherited directly from
MACLISP) does not appear to be functioning properly. When a problem
of this kind is encountered, the safest procedure is to abort the reading
process by typing a "G, thereby restarting the read-eval-print loop.

The failure to define a label can cause unforeseen difficulties in code
not designed to deal with dummy nodes. Therefore, the following two
"online operators" are typically used as a matter of course during the
development of a knowledge base.

(ugi)

returns a (possibly empty) list of atomic symbols representing all global
labels that have been used but not yet defined. This list is arranged in
alphabetical order and contains no duplicates.

27 ITS is the operating system used on M.I.T.'s ML, Al, and MC machines, ii of
which are modified PDP-lOs.

IL

- ~ ~ ~ ~ ~ ~ ~ 777 -7 .44t. . .. iII l I

45

(defugl)

causes all global labels that have been used but not yet defined to be
given (permanent) default definitions. (A default definition is a
concept whose ilk is default-definition.) Immediately after this has
been done, it is possible to determine quite straightforwardly whether
any labels have previously been given "cyclical" definitions; defugl
does this, and issues a warning if any cyclically defined labels are
found.

XLMS-based systems are normally constructed using [SB. See the [SB
manual [3] for how to: set up an XLMS-based system using LSB, format
a source file (for a module), compile a module, load the system, etc.

LK

- r:

46

References

1. Brown, G. P. "A Framework for Processing Dialogue",
MIT/LCS/TR-184, MIT Laboratory for Computer Science, Cambridge,
Ma., July 1977.

2. Burke, G. and Moon, D. "LOOP Iteration Macro",
MIT/LCS/TM-169, MIT Laboratory for Computer Science, Cambridge,
Ma., July 1980.

3. Burke, G. "LSB Manual" (in preparation), MIT Laboratory for
Computer Science, Cambridge, Ma.

4. Hawkinson, L. "The Representation of Concepts in OWL",
Proceedings, Fourth International Joint Conference on Artificial
Intelligence, Tblisi, Georgia, USSR, Sept. 1975.

5. Knuth, D. E. Fundamental Algorithms, Vol. 1 of The Art of
Computer Programming, second edition, Addison-Wesley, 1973.

6. Long, W. J. "A Program Writer", Ph.D. thesis, MIT Department of
Electrical Engineering and Computer Science, Cambridge, Ma., Nov. 1977
(available as MIT/LCS/TR-187, MIT Laboratory for Computer Science).

7. Martin, W. A. "The OWL Concept Hierarchy", in Proceedings of
Symposium of Directions in Artificial Intelligence: Natural Language
Processing, Grishman, R. (Ed.), Courant Computer Science Report #7,
Courant Institute of Mathematical Sciences, Computer Science
Department, New York University, New York, N. Y., Aug. 1975.

8. Martin, W. A. "OWL", Proceedings, Fifjih International Joint
Conference on Artificial Intelligence, MIT, Cambridge, Ma., Aug. 1977,
985-87.

9. Martin, W. A. "Descriptions and the Specialization of Concepts", in
Artificial Intelligence, an MIT Perspective, Winston, P. (Ed.), MIT Press,
Cambridge, Ma., 1979.

10. Swartout, W. R. "A Digitalis Therapy Advisor with Explanations",
MIT/LCS/TR-176, MIT Laboratory for Computer Science, Cambridge,
Ma., Aug. 1977.

11. Szolovits, P., Hawkinson, L. B., and Martin, W. A. "An Overview of
OWL, a Language for Knowledge Representation", in Proceedings of
Workshop on Natural Language for Interaction with Data Bases,
International Institute for Applied Systems Analysis (IIASA), Schloss
Laxenburg, Austria, Jan. 1977 (also available as MIT/LCS/TM-86).

47

common-cue 19
common-element 26
comnmon-superior matching 35

INDEX complex 8
computational expression 12, 3

6 concept 1, 5, 19

9 concept-nodep 15
a-list 25 concept taxonomy 34
above 17 conceptp 15
absorb-time 12 concepts-only 24
absorption form 13 concepts-with-cue 20
absorption (of LMS notation) 3 constituent (of an object) I
abstraction hierarchy 17 cue 1, 19
access (to a concept) 19 cue 15
access (to a sequence) 26 declare-attachment-relatIon 24, 10

age of anode 34default definition 45
age ofa node) 34 detault-deflnltios 45
aphaors 34 efine-primitive-flc 16. 6

anaphor (in LMS notation) 10 definition (of a label) 6, 4

a naphoric abbreviation I I detugl 45
append 28 delimited LMS notational expresaoit
*applicable-functiom 95
appositive 6 derivative subclassification 17
assignment (of a label) 4, 6, 37 detach-if-presnt 21
atomic number 12, 38 determinability (of what is represented
atomic small integer 22 by a piece of notation) i
atomic symbol 1, 3, 12, 36 ditto 7
attachment 2, 7, 44 double-quoted spelling 3
attachment relation 2, 24 dummy node 2, 7
attachment relation name 8, 21, 24 duplicates-allowed 24
attachment relation number 24 #e 9
attachment-relationp 24 each 23, 30
attachment specification 8 element (of a sequence)I
backspace 36 elements 30
beforep 35 eof 36
bet orep-or-eq 36 eq 6
bell 36 #equall 9
body (of a loop form) 14 equation 6
#c 9 *exemplar 9
canonical-order 24 Of 6
canonical order (of nodes) 3i, 11. 19, #f 9

21 fixnum 22, 44
character 36 formfeed 36
character code 36 function 6
character code set 36 #function 9
character name 36 generalizer 17
*characterization 9 genus 1, 31
CO-LTM 35 pens 32
colon anaphor 10 ge-ateeeto-eum28

48

pt-lst-~emmt-o-se~uece-local label 4
fragment 29 look-for-attachmeut 22

get-nthi-Attacbmsint 22 look-for-attachment-under-or-eq 22
get t-elemet-of-snMce 28 look-for-concept 20
get-value 23 look-for-concept-via-cue 20
global labl 4, 37 look-for-global-label 37
#b 9 look-for-Ieast-guperior-comcpt 19
#has-role 9 look-for-node 32
ql 6 look-for-oode-glven-isogeneric.
ilk 1, 19 superior 33
Ilk Is look-for-origin 22
immediate constituent 1, 44 look-for-sequence 29
immediate inferior (of a node) 1?, 18 look-for-sequemce-fragment 29
immediate-inferiors 15A 30,31 book-for-sequence-va-element 29
immediate-superlor 32 loop 14
immediate superior (of a node) 17 loop form 14
incidental node A0 2 LSB 45
individual 6 LTM 35
inferior (of a node) 17 #m 9
inheritance 17 MACLISP 44
integral 25 make-atomic-mamber 35
#iuverse-metacbaracterizutiou 9 make-attachment 21
isogeneric superior 31 make-character 36
itemization 11 make-character-code 36
iteration-driving clause 14 make-concept 15
ITS 44 make-global-lae-aulgnmuw 37
#k 9 make-LMS-atomic-symbol 36
#Katz-feature 9 make-node 31
knowledge base 44 make-node-givea-isogemeric.uperlor
knowledge-based system 2 31
knowledge representation I make-nuuierically-labeled-comcpt
label 2,4,36,44 39
least common superior 32 make-sequence 28
least-common-superlor 32 memory I
least-common-superior-comcpt 19 #metacharacterlzatiou 9
*least-existiog-superior 20 32 multiset representation I I
letter (in a normal spelling) 3 *1a 9
lexical unit 36 sewline 36
linefeed 36 oil 4, 36
LISP I nodelI
LISP notation 3 node tree 17, 18, 34
list cell 25 nodep 31
list-global-labels 37 modes-only 24
LMS 1 normal spelling 3, 4, 37
LR4S-append 25 inormal-spelllngp 37
LMS notation 3 notation-based construction 13
LMS Notation 3 null sequence 1, 11
LMS notational expresson 3 null-sequence 11
LWMS.sqimepp 27 null sequence fragment 1, 12

49 '
number 37 sequence-modep 27
numeric label 4, 37 sequence-or-frageut. sofet 2?
numeric spelling 4, 38 sequescesvwith-element 30
numerically labeled concept 37, 4, 34 set representation I I
aumerically-labeledp 38 space 36
uumericallyselledp 38 spec jalizer 1, 31

object 1 specializer 32
online 44 species 6
order-insensitive itemization 11 spontaneous creation (of & node) 31
origin 22 square-bracket-delimited expression 7,
*origin 24 44
OWL 2 stereotype 6
*p 6 subclassp 17
#P 9 subcouceptp 17
parenthesized pair 5 subtree extent pointer 35
partitive 6 summum-genus 1, 17.19,.32F
path clause 14 superior 19, 32
pointer 14 superior (of a node) 17, 1S
#predicate-type 9 superiors 18,30
preorder traversal 18 #Syntactic-mnm 9 >
primitive tie 6, 15 St 6
primitive-tiep 15 tab 36
printing online 44 taxonomy of descriptions 17
private 9 tie 1, 19
proper name Itie 15
protonode 31 trivial itemization 11
prototype application 14 truucate-sequeuce-fragnent 29
*q 9 two-way attachment specification 8
Or 6 On 6
#r 9 ugl 44
read-eva -prInt loop 44 under 17
reliable access (to a node) 31 underp 17
replace-vallue 23 umderp-or-eq 18
reverse-attachment specification 8 unique-role-in 6
role-in 6 uparrow anaphor 10
*role-lu 9 #v 9
rubou! processing 44 *value 9
Os6 #z 9
*# 9 XLMS L.44
saine-ilk-and-tie 15 zone 21
#seuiamtlc-uame 9 zone feature indicator 24
semantic network I zone-preseut 23
sequence 1 11. 27,35 :9 36
#sequence-ellemtet 21 < 33, 35
sequence fragment 1, 12, 27 c: 16, 17
sequence-tragnieut-Iengthl 30 r 18
seq ueuce-fragnieut-nodep 27
sequesce-f raginestp 27
sequence-lengt 30

OFFICIAL DISTRIBUTION LIST

Defense Technical Information Center
Careron Station
Alexandria, VA 22314 12 copies

Office of Naval Research Office of Naval Research
Information Systems Program Code 455
Code 437 Arlington, VA 22217
Arlington, VA 22217 1 copy

2 copies
Dr. A. L. Slafkosky

Office of Naval Research Scientific Advisor
Branch Office/Boston Cammandant of the Marine Corps
Building 114, Section D (Code RD-i)
666 Summer Street Washington, D. C. 20380
Boston, MA 02210 1 copy

1 copy
Office of Naval Research

Office of Naval Research Code 458
Branch Office/Chicago Arlington, VA 22217
536 South Clark Street 1 copy
Chicago, IL 60605

1 copy Naval Ocean Systems Center, Code 91Headquarters-copter Sciences &

Office of Naval Research Simulation Department
Branch Office/Pasadena San Diego, CA 92152
1030 East Green Street Mr. Lloyd Z. Maudlin
Pasadena, CA 91106 1 copy

1icopy Mr. E. H. Gleissner
Naval Ship Research & Development Center
cmnputation & Math Department
Bethesda, MD 20084

1 copy

Naval Research Laboratory Captain Grace M. Hopper, USNR
Technical Information Division NAVDAC-OOH
Code 2627 Department of the Navy

Washington, D. C. 20375 Washingon, D. C. 20374
6 copies 1 copy

Assistant Chief for Techrlogy
Office of Naval Research
Code 200
Arlington, VA 22217

1 copy

--- ,-

